
APCS - Java, Lesson 24 © ICT 2003, www.ict.org, All Rights Reserved O.A.24.1 (Page 1)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 24 – Order of Algorithms

INTRODUCTION: The two criteria used for selecting a data structure and algorithm are the amount

of memory required and the speed of execution. The analysis of the speed of an
algorithm leads to a summary statement called the order of an algorithm.

The key topics for this lesson are:

A. Order of Algorithms
B. Constant Algorithms, O(1)
C. log2N Algorithms, O(log2N)
D. Linear Algorithms, O(N)
E. N * log2N Algorithms, O(N * log2N)
F. Quadratic Algorithms, (N2)
G. Other Orders
H. Comparison of Orders of Algorithms

VOCABULARY: ORDER OF ALGORITHM CONSTANT
 LOG2 N LINEAR
 N LOG2 N QUADRATIC
 CUBIC BIG O NOTATION

DISCUSSION: A. Order of Algorithms

1. The order of an algorithm is based on the number of steps that it takes to
complete a task. Time is not a valid measuring stick because computers have
different processing speeds. We want a method of comparing algorithms that
is independent of computing environment and microprocessor speeds.

2. Most algorithms solve problems involving an amount of data, N. The order of

algorithms will be expressed as a function of N, the size of the data set.

APCS - Java, Lesson 24 © ICT 2003, www.ict.org, All Rights Reserved O.A.24.1 (Page 2)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

3. The following chart summarizes the numerical relationships of common
functions of N.

 A B C D E
 N O(log2N) O(N) O(N* log2N) O(N2)

1 0 1 0 1

2 1 2 2 4

4 2 4 8 16

8 3 8 24 64

16 4 16 64 256

32 5 32 160 1024

64 6 64 384 4096

128 7 128 896 16384

256 8 256 2048 65536

512 9 512 4608 262144

1024 10 1024 10240 1048576

a. The first column, N, is the number of items in a data set.

b. The other four columns are mathematical functions based on the size of

N. In computer science, we write this with a capital O (order) instead of
the traditional F (function) of mathematics. This type of notation is the
order of an algorithm, or Big O notation.

c. The graph below gives a clearer sense of the relationships among the

columns of numbers. Since the vertical axis represents the theoretical
number of steps required by an algorithm to sort a list of N items, lines B
and C represent more efficient algorithms than D and E. Today’s data
sets can grow to enormous sizes, so algorithm designers are always
looking for ways to reduce the number of steps, even on the fastest
supercomputers.

Order of Algorithms

0

5

10

15

20

0 10 20 30N

O(N)

B

C

D

E

APCS - Java, Lesson 24 © ICT 2003, www.ict.org, All Rights Reserved O.A.24.1 (Page 3)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

d. You have already seen column E in an experimental sense when you counted
the number of steps in the quadratic sorting algorithms. The relationship
between columns A and E is quadratic - as the value of N increases, the
other column increases as a function of N2. The graph of column E is a
portion of a parabola.

B. Constant Algorithms, O(1)

1. This relationship was not included in the chart. Here, the size of the data set

does not affect the number of steps this type of algorithm takes. For
example:

int howBig (int[] list)
{
 return list.length;
}

2. The number of data items in the array could vary from 0…4000, but this does
not affect the howBig algorithm. It will take one step regardless of how big
the data set is.

3. A constant time algorithm could have more than just one step, as long as the

number of steps is independent of the size (N) of the data set.

C. Log2N Algorithms, O(log2N) – line B on the graph

1. A logarithm is the exponent to which a base number must be raised to equal a

given number.

2. A log2N algorithm is one where the number of steps increases as a function

of log2N. If the number of data was 1024, the number of steps equals
log21024, or 10 steps.

3. Algorithms in this category involve splitting the data set in half repeatedly.

Several examples will be encountered later in the course.

4. Algorithms that fit in this category are classed as O(log N), regardless of the

numerical base used in the analysis.

APCS - Java, Lesson 24 © ICT 2003, www.ict.org, All Rights Reserved O.A.24.1 (Page 4)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

D. Linear Algorithms, O(N) – line C on the graph

1. This is an algorithm where the number of steps is directly proportional to the

size of the data set. As N increases, the number of steps also increases.

long sumData (int[] list)
// sums all the values in the array
{
 long total = 0;

 for (int loop = 0; loop < list.length; loop++)
 {
 total += list[loop];
 }
 return total;
}

2. In the above example, as the size of the array increases, so the number of
steps increases at the same rate.

3. A non-recursive linear algorithm, O(N), always has a loop involved.

4. Recursive algorithms, in which the looping concept is developed through

recursive calls, are usually linear. For example, the recursive factorial
function is a linear function.

long fact (int n)
// precondition: n > 0
{
 if (1 == n)
 return 1;
 else
 return n * fact(n - 1);
}

 The number of calls of fact will be n. Inside of the function is one basic step,
an if/else. So we are executing one statement n times.

E. N * log2N Algorithms, O(N * log2N) – line D on the graph

1. Algorithms of this type have a log 2N procedure that must be applied N times.

2. When recursive MergeSort and Quicksort are covered, we will discover that

they are O(N * log2N) algorithms.

3. As the graph shows, these algorithms are markedly more efficient than our

next category, quadratics.

APCS - Java, Lesson 24 © ICT 2003, www.ict.org, All Rights Reserved O.A.24.1 (Page 5)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

F. Quadratic Algorithms, (N2) – line E on the graph

1. This is an algorithm in which the number of steps required to solve a problem

increases as a function of N2. For example, here is bubbleSort.

void bubbleSort (int[][] list)
{
 for (int outer = 0; outer < list.length - 1; outer++)
 {
 for (int inner = 0; inner <= list.length - outer; inner++)
 {
 if (list[inner] > list[inner + 1])
 {
 // swap list[inner] & list[inner + 1]
 int temp = list[inner];
 list[inner] = list[inner + 1]);
 list[inner + 1] = temp;
 }
 }
 }
}

2. The if statement is buried inside nested loops, each of which is tied to the
size of the data set, N. The if statement is going to be executed
approximately N times for each of N items, or N2 times in all.

3. The efficiency of this bubble sort was slightly improved by having the inner

loop decrease. But we still categorize this as a quadratic algorithm.

4. For example, the number of times the inner loop happens varies from 1 to (N-

1). On average, the inner loop occurs (N/2) times.

5. The outer loop happens (N-1) times, or rounded off N times.

6. The number of times the if statement is executed is equal to this expression:

if statements = (Outer loop) * (Inner loop)

if statements = (N) * (
N
2)

if statements =
N2

2

7. The coefficient
1
2 becomes insignificant for large values of N, so we have an

algorithm that is quadratic in nature.

APCS - Java, Lesson 24 © ICT 2003, www.ict.org, All Rights Reserved O.A.24.1 (Page 6)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

8. When determining the order of an algorithm, we are only concerned with its
category, not a detailed analysis of the number of steps.

APCS - Java, Lesson 24 © ICT 2003, www.ict.org, All Rights Reserved O.A.24.1 (Page 7)
Use permitted only by licensees in accordance

with license terms (http://www.ict.org/javalicense.pdf)

G. Other Orders

1. A cubic algorithm is one where the number of steps increases as a cube of N,

or N3.

2. An exponential algorithm is one where the number of steps increases as the

power of a base, like 2N.

3. Both of these categories are astronomical in the number of steps required.

Such algorithms are avoided when possible, and for large values of N can run
slowly on small computers.

H. Comparison of Orders of Algorithms

1. We obviously want to use the most efficient algorithm in our programs.

Whenever possible, choose an algorithm that requires the fewest number of
steps to process data.

See Transparency
T.A.24.1, Order vs.
Efficiency in Algorithms.

2. The transparency, T.A.24.1, Order vs. Efficiency in Algorithms , summarizes
all the categories in this lesson. Note that both axes in this diagram are
exponential in scale.

SUMMARY/
REVIEW:

When designing solutions to programming problems, we are often concerned with
finding the most efficient solutions regarding time and space. We will consider
memory requirements at a later time. Speed issues are resolved based on the
number of steps required by algorithms.

ASSIGNMENT: Worksheet W.A.24.1, Order of Algorithms

