
APCS – Java, Lesson 33 © ICT 2003, www.ict.org, All Rights Reserved O.A.33.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 33 – Java Lists and Iterators

INTRODUCTION: This lesson presents the Java library List interface and the LinkedList class

that implements the List interface. The lesson also introduces the use of
iterators to traverse linked lists.

The key topics for this lesson are:

A. The List Interface
B. LinkedList Library Implementation of the List Interface
C. Traversing a List using Iterator or ListIterator Objects

VOCABULARY: TRAVERSE ITERATOR

DISCUSSION: A. The List Interface

1. The List interface from the java.util package gives a formal description

of a list. The Java library also provides two classes, ArrayList and
LinkedList that implement the List interface.

2. Like ArrayList and other collection classes, LinkedList can store objects

that have the Object data type. Since any class extends Object, you can
put any kind of object into a list. Since the methods that retrieve values from
the list return an object, you have to cast the object back into its original type
when it is retrieved from the list. For example:

List classList = new LinkedList();
classList.add(?APCS?);
...
String favoriteClass = (String)classList.get(1);

3. These classes assume that the values in the list have the type Object. To put
primitive data types such as ints or doubles into the list, you need to first
convert them to into objects using the appropriate wrapper class, Integer or
Double. For example:

List numList = new LinkedList();
numList.add(new Integer(23));
numList.add(new Double(3.14159));
...
int i = ((Integer)numList.get(0)).intValue();
double d = ((Double)numList.get(1)).doubleValue();

APCS – Java, Lesson 33 © ICT 2003, www.ict.org, All Rights Reserved O.A.33.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

4. It is assumed that the elements in the list are indexed starting from 0.
“Logical” indices are used even if a list is not implemented as an array.
Methods that use indices generate a run-time error if an index is out of
bounds.

APCS – Java, Lesson 33 © ICT 2003, www.ict.org, All Rights Reserved O.A.33.1 (Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

5. A few commonly used List methods are summarized below.

boolean add(Object element)
// Appends the given element to the end of this list

void add(int index, Object element)
// Inserts the specified element at the specified position

int size()
// Returns the number of elements in this list

Object get(int index)
// Returns the element at the specified position in this list

Object set(int index, Object element)
// Replaces the element at the specified position in this list
// with the specified element

Object remove(int index)
// Removes the first occurrence in this list of the specified
// element

B. LinkedList Library Implementation of the List Interface

1. The java.util package of the standard class library has a LinkedList

class. The LinkedList class implements the List interface. As the class
name indicates, the underlying implementation of the LinkedList class is a
linked list.

2. In addition to the methods specified by the List interface, the LinkedList

class provides a few specialized methods that allow easy access to both ends
of the list as follows:

void addFirst(Object element)
// Inserts the given element at the beginning of this list.

void addLast(Object element)
// Appends the given element to the end of this list.

Object getFirst()
// Returns the first element in this list

Object getLast()
// Returns the last element in this list

Object removeFirst()
// Removes and returns the first element from this list

Object removeLast()
// Removes and returns the last element from this list

APCS – Java, Lesson 33 © ICT 2003, www.ict.org, All Rights Reserved O.A.33.1 (Page 4)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

C. Traversing a List using Iterator or ListIterator Objects

1. A traversal of a list is an operation that visits all the elements of the list in

sequence and performs some operation. For example, the following loop can
be used to traverse a linked list:

ListNode node = first; // start from the first node
while (node != null)
{
 SomeClass value = (SomeClass)node.getValue();
 // process value
 ...
}

When the linked list is implemented as an encapsulated class, first is no
longer directly accessible. To provide access to the elements of a list and
maintain the protection afforded by encapsulation, the Java library supplies an
Iterator type.

2. An iterator is an object associated with the list. When an iterator is created, it
points to a specific element in the list, usually the first. We call the iterator’s
methods to check whether there are more elements to be visited and to obtain
the next element.

3. In Java, the iteration concept is expressed in the library interface
java.util.Iterator. The Iterator interface is used by classes that
represent a collection of objects such as a list, providing a way to move
through the collection one object at a time. The Iterator interface is not
used to represent the list itself, it merely represents a way to move through
the elements of the list.

4. An Iterator object provides three basic methods:

Object next()
// Returns the next element in the iteration

Object hasNext()
// Returns true if the iteration has more elements

void remove()
// Removes the last element returned by next from the list

5. A list traversal would be implemented with an iterator as follows:

LinkedList list = new LinkedList()
// Add values to the list
...

APCS – Java, Lesson 33 © ICT 2003, www.ict.org, All Rights Reserved O.A.33.1 (Page 5)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

Iterator iter = list.iterator();
while (iter.hasNext())
{
 Object obj = iter.next()
 System.out.println(obj);
}

Note that the list itself provides an iterator when its iterator() method is
called.

6. A limitation of the Iterator interface is that an iterator always iterates

from the beginning of the list and only in one direction.

7. A more comprehensive ListIterator object is returned by List’s
listIterator method. ListIterator extends Iterator. A
ListIterator can start iterations at any specified position in the list and
can proceed forward or backward. For example:

ListIterator listIter = list.listIterator(list.size());
while (listIter.hasPrevious())
{
 SomeClass value = (SomeClass)listIter.previous();
 // process value
 ...
}

8. Some useful ListIterator methods are summarized below

Object next()
// Returns the next element in the iteration
Object hasNext()
// Returns true if the iteration has more elements

Object previous()
// Returns the previous element in the iteration
Object hasPrevious()
// Returns true if the previous element in the list is
// is available, false otherwise

void add(Object obj)
// Inserts the element obj into the list immediately after
// the last element that was returned by the next method

void set(Object obj)
// Replaces the last element returned by next or pervious
// with the element obj

void remove()
// Removes the last element returned by next or previous
// from the list

SUMMARY/
REVIEW:

In Lesson 25, you developed a recursive merge sort algorithm using arrays. An
unordered linked list is difficult to sort given its sequential nature, but a recursive

APCS – Java, Lesson 33 © ICT 2003, www.ict.org, All Rights Reserved O.A.33.1 (Page 6)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

merge sort can be developed for linked lists using the LinkedList class. The
algorithms required (split and merge) will provide excellent practice in working
with the LinkedList, Iterator, and ListIterator classes. After applying
a recursive merge sort to a linked list, another function to reverse the list will be
written.

ASSIGNMENT: Lab Exercise L.A.33.1, MergeList

APCS - Java, Lesson 33 © ICT 2003, www.ict.org, All Rights Reserved L.A.33.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

MergeList

Background:

An unordered linked list is difficult to sort given its sequential nature, but a recursive merge sort can be
developed for linked lists. The algorithms required (split and merge) will provide excellent practice in
working with the java.util.LinkedList and ListIterator classes.

A linked list can be sorted using a recursive merge sort algorithm. Here are the steps:

1. Split the list into two smaller lists.
2. Recursively sort these two lists using merge sort.
3. Merge the two sorted lists together.

Suppose we begin with a list of seven nodes, pointed to by A.

57 19 82 4 25 12 2 A

We then split this list into two smaller lists that differ in size by no more than one node. It does not matter
which values end up in either list. In the example to follow, list A will take the first half of the list while list
B will have the second half of the original list.

57 19 82 4 A

25 12 2 B

Next, we recursively sort these two lists.

5719 824 A

25122 B

Finally, we merge these two sorted lists together.

5719 824 25122 A

APCS - Java, Lesson 33 © ICT 2003, www.ict.org, All Rights Reserved L.A.33.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

You are encouraged to look over your code for the merge and mergeSort methods from Lesson 25.
Reviewing these algorithms as applied to arrays will help you to solve the same mergesort concept with
linked lists.

Assignment:

1. The linked list should be of type java.util.LinkedList.

2. The data file to be used in this lab is (file20.txt).

3. Building the initial linked list from (file20.txt) should follow this logic. As each new piece of data

(Id/Inv pair) comes off the data file, it is placed at the beginning of the list. Therefore, the first values
read from the data file will end up last in the list.

4. The recursive merge sort algorithm will need the supporting algorithms of splitting and merging lists.

List iterators should be used to implement these methods.

5. Your program should consist of this sequence of scripted events:

 Load the data file and build the initial list
 Print the linked list - it is unordered
 Recursively merge sort the list
 Print the linked list - it is now sorted
 Reverse the linked list
 Print the linked list - it is now in descending order

6. If your instructor chooses, you will be provided with a program shell consisting of a MergeList class

containing a main method, and the Item class. All of the code development should appear in the
MergeList class. Here are some of the specifications of the MergeList class.

a. The reverseList method is stubbed out as a print statement.

b. The split method is stubbed out as a print statement.

c. The merge method is stubbed out as a print statement.

d. Methods to read the data file and print the list are provided.

Instructions:

1. Modify and write code as necessary to satisfy the above specifications.

2. Print out the source for the MergeList class.

3. Turn in your source along with the run output.

