STUDENT OUTLINE

Lesson 34 — Binary Trees

INTRODUCTION: A binary treeis adifferent kind of data structure that demands new terminology
and dgorithms. A binary tree node will have two pointers available for linking
with other nodes, resulting in diagrams that look like inverted trees. A binary tree
will begin with one node at the top and branch out below. Asyou might expect,
the potential of going one of two different ways leads to some challenging
programming problems. In fact, the idea of trying one direction, then
backtracking must lead to recursion. The recursive agorithms used to traverse
binary trees are very elegant and compact, but difficult to understand. But, one
step at atime; first we need to learn how to talk about binary trees (vocabulary)
and then build one (an agorithm).

The key topics for this lesson are:

A. Binary Tree Vocabulary
B. Building aBinary Tree
C. Shapeof aBinary Tree

VOCABULARY: BINARY TREE ROOT NODE
PARENT NODE CHILD NODE
LEAF SUBTREE
LEVELS EDGE

DISCUSSION: A. Binary Tree Vocabulary

1. A binary tree is a data structure where each node has two pointers, each
pointing to another node or anul | value.

Root

(20) © (@
) ONNO

APCS - Java, Lesson 34 © ICT 2003, www.ict.org, All Rights Reserved 0.A.34.1 (Pagel)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



APCS- Java, Lesson 34

The following binary tree terms will be defined and applied to the above
example.

a. Root node - the top node in the tree; the node whose value is 52.
b. Parent node - a node which points to one or two nodes.

c. Child node - the node being pointed to from a parent; every node in the
treeis a child to another node, except for the root node.

d. Leaf - anode that has no children

e. Levd - the distance from the root, calculated by counting the shortest
distance from the root to that node. Examples. 29 isthe value stored in a
node et level 1, 62 isavaue stored in anode &t level 2, 17 is the value of
anode stored at level 3, etc.

f. [Edge- an edgejoinstwo nodes. In the above diagram each arrow
represents an edge.

Thistree is an example of an ordered binary tree that has the following
property. For every parent node, a child to the right will have alarger value,
while a child to the left will have a smaller value.

A subtree is the entire left branch or right branch of anode. For example, the
left subtree of the node containing 52 has 4 nodes. The right subtree of node
containing 75 has only 1 node.

A leaf will havetwo nul | pointers.

. Building aBinary Tree

The following definitions will apply in this next section on building a binary
tree.

public class TreeNode

{

private bject val ue;
private TreeNode |eft;
private TreeNode right;

public TreeNode(Cbject initValue, TreeNode initlLeft,
TreeNode initRight)

{
val ue = initVal ue;
left = initLeft;
right = initR ght;
}

© ICT 2003, www.ict.org, All Rights Reserved 0.A.34.1 (Page 2)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



See Transparency
T.A.34.1, Building a Binary
Tree, for assistance.

APCS- Java, Lesson 34

public Ohject getValue()

{
return val ue;
}
public TreeNode getLeft()
{
return left;
}
public TreeNode get Ri ght ()
{
return right;
}
public void setVal ue(hj ect theNewval ue)
{
val ue = t heNewval ue;
}
public void setLeft(TreeNode theNewLeft)
{
left = theNewLeft;
}
public void setRi ght (TreeNode theNewRi ght)
{
right = theNewR ght;
}

}

Suppose the following integers were inserted into a binary tree in this order:
26 79 14 9 53 9 3H 21 87

Draw the resulting binary tree:

© ICT 2003, www.ict.org, All Rights Reserved 0.A.34.1 (Page 3)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



SUMMARY/
REVIEW:

APCS- Java, Lesson 34

3. You will notice that new information was placed in the binary tree as a
leaf. Theinsert dgorithm will be a recursive solution.

4. Given this parameter list for thei nsert method, develop the pseudocode
below it.

void insert (TreeNode node, (bject data)
/1l WIl insert data into an ordered binary tree.
/1 The solution is recursive.

C. Shapeof aBinary Tree

1. The shape of abinary tree will affect its performance as a data structure and
is dependent on the order of the data set.

2. If thedataset cameinasasorted list (1234 ...), the binary treeis
essentialy alinked list with an unused left pointer in each node.

3. A dataset in random order will give a more balanced tree.

4. Idedlly, we want binary trees that are balanced with amost equal numbers of
nodes in each subtree of anode. The characteristic of a balanced binary tree
is defined asfollows: for every node in the tree, the number of nodesin its
left subtree is equd to the number of nodes in its right subtree, plus or minus
one. Balancing binary trees will not be covered in this curriculum guide.

Y ou have learned how to build a binary tree; but isit correct? We need to “see’
the tree by printing it out in ascending order. Examine the binary trees developed
in this lesson and think about the task of printing out the valuesin order. The next
lesson will introduce you to arecursive solution to this problem, as well as afew

© ICT 2003, www.ict.org, All Rights Reserved 0.A.34.1 (Page 4)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



other binary tree algorithms.

ASSIGNMENT: Lab Exercise L.A.34.1, BSTree

APCS- Java, Lesson 34 © ICT 2003, www.ict.org, All Rights Reserved 0.A.34.1 (Page 5)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



LAB EXERCISE

BSTree

Background:

In previous lessons you stored a datafile, (file20.txt), in different data structures. an array of structures,
linked list, and doubly-linked list. Inthe linked-list 1ab, we built the data structure, printed it out, searched
for values, and deleted values. We will solve the same fundamental tasks using a binary tree as the data
structure. Y ou can build the binary tree in this first session, but the rest of the algorithms will be left as
program stubs.

I nstructions:

1. You may assume the following type definitions apply in this |ab exercise:

public class TreeNode

{
private Cbject val ue;
private TreeNode |eft;
private TreeNode right;
public TreeNode(Object initValue, TreeNode initLeft, TreeNode initRight)
{ value = initValue; left = initLeft; right = initRi ght; }
public Object getValue() { return value; }
public TreeNode getlLeft() { return left; }
public TreeNode getRight() { return right; }
public void setVal ue(bject theNewval ue) { value = theNewal ue; }
public void setLeft(TreeNode theNewLeft) { left = theNewLeft; }
public void setRi ght (TreeNode t heNewRi ght) { right = theNewRi ght; }
}

2. Build amain menu with the following choices:

() Read afilefrom disk, build the binary tree
(2  Print thetreein order

(3) Searchthetree

(4) Delete from the tree

(5 Count the nodesin the tree

3. Start with the source code for the ordered linked-list lab from Lesson 31. Ther eadDat a method will
require small changes. The algorithmsinside of all the routines will change, but the basic structure of
the program will not.

APCS - Java, Lesson 34 © ICT 2003, www.ict.org, All Rights Reserved L.A.34.1(Pagel)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



4. Complete the code for thei nsert method. A precondition of the insert routine; the data file will
contain no duplicate id values.

5. Stub the rest of the menu choices.

6. You may compile and run this program, but you cannot verify if your insert agorithm worked until you
learn the material in Lesson 35. Use adata file as provided by your instructor.

7. Turnin onefina assgnment when al the menu choices are completed in Lesson 36.

APCS - Java, Lesson 34 © ICT 2003, www.ict.org, All Rights Reserved L.A.34.1 (Page?2)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



