INTRODUCTION:

VOCABULARY:

DISCUSSION:

APCS - Java, Lesson 33

STUDENT OUTLINE

Lesson 33 — Java Lists and lterators

This lesson presents the Javalibrary Li st interface and the Li nkedLi st class
that implementsthe Li st interface. The lesson aso introduces the use of
iteratorsto traverse linked lists.

The key topics for this lesson are:

A. Theli st Interface

B. LinkedLi st Library Implementation of theLi st Interface
C. Traversngalistusing|terator orListlterator Objects

TRAVERSE ITERATOR

A. Theli st Interface

1. ThelListinterfacefromthej ava. uti| package givesaformal description
of alist. The Javalibrary aso provides two classes, ArrayLi st and
Li nkedLi st that implement the Li st interface.

2. LikeArrayLi st and other collection classes, Li nkedLi st can store objects
that have the bj ect datatype. Since any class extends Qbj ect , you can
put any kind of object into alist. Since the methods that retrieve values from
the list return an object, you have to cast the object back into its origina type
when it isretrieved from the list. For example;

Li st cl assList = new LinkedList();
cl assLi st . add( ?APCS?) ;

String favorited ass = (String)classList.get(1);

3. These classes assume that the valuesin the list have the type Obj ect . To put
primitive data types such asi nt sor doubl esinto the list, you need to first
convert them to into objects using the appropriate wrapper class, | nt eger or
Doubl e. For example:

Li st nuniist = new Li nkedLi st ();
nunli st. add(new I nteger (23));
nunli st. add(new Doubl e(3. 14159));

int i = ((Integer)nunList.get(0)).intValue();
doubl e d = ((Doubl e) nunLi st.get(1)).doubl eVal ue();

© ICT 2003, www.ict.org, All Rights Reserved 0.A.331(Pagel)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



4. Itisassumed that the elementsin the list are indexed starting from O.
“Logica” indices are used even if alist is not implemented as an array.
Methods that use indices generate a run-time error if an index is out of
bounds.

APCS—Java, Lesson 33 © ICT 2003, www.ict.org, All Rights Reserved 0.A.33.1 (Page 2
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



APCS - Java, Lesson 33

5. A few commonly used Li st methods are summarized below.

bool ean add( Chj ect el enent)
/1 Appends the given element to the end of this |ist

voi d add(int index, Chject elenent)
/1 Inserts the specified elenent at the specified position

int size()
/] Returns the nunber of elenents in this |list

bj ect get (int index)
/1 Returns the elenent at the specified position in this |ist

hj ect set(int index, Qbject elenent)
/1 Replaces the elenent at the specified position in this |ist
I with the specified el enent

oj ect renove(int index)

/1 Renoves the first occurrence in this list of the specified
/1 el enent

Li nkedLi st Library Implementation of the Li st Interface

Thej ava. uti | package of the standard class library hasaLi nkedLi st
class. The Li nkedLi st classimplementsthe Li st interface. Asthe class
name indicates, the underlying implementation of the Li nkedLi st classisa
linked list.

In addition to the methods specified by the Li st interface, the Li nkedLi st
class provides a few specialized methods that allow easy access to both ends
of thelist asfollows:.

voi d addFirst (Qbj ect el ement)
/1 Inserts the given el enment at the beginning of this |ist.

voi d addLast (Chj ect el enent)
/1 Appends the given elenent to the end of this list.

hj ect getFirst()
/] Returns the first elenent in this |ist

bj ect getlLast()
/! Returns the last elenent in this list

bj ect renoveFirst ()
/! Renpbves and returns the first elenent fromthis |ist

Obj ect renmovelast ()
/!l Renpbves and returns the last elenent fromthis |ist

© ICT 2003, www.ict.org, All Rights Reserved 0.A.33.1 (Page 3)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



APCS - Java, Lesson 33

. Traversngalistusnglterator orLi stlterator Objects

A traversa of alist is an operation that visits al the elements of the list in
sequence and performs some operation. For example, the following loop can
be used to traverse alinked list:

Li st Node node = first; /] start fromthe first node
while (node !'= null)
{

Soned ass val ue = (Soned ass) node. get Val ue();
/1 process val ue

}

When the linked list isimplemented as an encapsulated class, fi r st iSno
longer directly accessible. To provide access to the elements of alist and
maintain the protection afforded by encapsulation, the Javalibrary supplies an
I terator type

An iterator is an object associated with the list. When an iterator is created, it
points to a specific eement in the list, usudly the first. We cal the iterator’'s
methods to check whether there are more elements to be visited and to obtain
the next e ement.

In Java, the iteration concept is expressed in the library interface
java.util.lterator.Thelterator interfaceis used by classes that
represent a collection of objects such as alist, providing away to move
through the collection one object a atime. Thel t er at or interface is not
used to represent the list itsalf, it merely represents a way to move through
the elements of the list.

Anlterator object provides three basic methods:

Ooj ect next ()
/]l Returns the next elenent in the iteration

Qbj ect hasNext ()
/! Returns true if the iteration has nore el enents

voi d renove()
/! Renoves the |last elenment returned by next fromthe |ist

A list traversal would be implemented with an iterator as follows:

Li nkedLi st |ist = new LinkedLi st ()
/1 Add values to the |ist

© ICT 2003, www.ict.org, All Rights Reserved 0.A.33.1 (Page 4)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



Iterator iter = list.iterator();
while (iter.hasNext())

{
Coj ect obj = iter.next()

Systemout. println(obj);
}

Note that the list itself provides an iterator whenitsi t er at or () method is
caled.

6. A limitation of thel t er at or interface isthat an iterator always iterates
from the beginning of the list and only in one direction.

7. A more comprehensive Li st 1t er at or objectisreturned by Li st’s
listlterator method. Li stlterator extendslterator. A
Li st1terator candart iterations at any specified position in the list and
can proceed forward or backward. For example:

Listlterator listlter = 1list.listlterator(list.size());
while (listlter.hasPrevious())
{

Soned ass value = (Sonmed ass)listlter. previous();
/1 process val ue

}

8. Someuseful Li st 1t erator methods are summarized below

oj ect next ()

/] Returns the next elenent in the iteration

Qbj ect hasNext ()

/! Returns true if the iteration has nore el enents

Ohj ect previous()

/! Returns the previous elenment in the iteration

bj ect hasPrevi ous()

/!l Returns true if the previous element in the list is
I is avail abl e, fal se otherw se

voi d add( Qbj ect obj)
/1 Inserts the elenent obj into the list imrediately after
I the last elenent that was returned by the next nethod

voi d set (Cbject obj)
/1 Replaces the |ast elenent returned by next or pervious
I with the el enent obj

voi d renove()
/1 Renoves the |ast elenment returned by next or previous
I fromthe |ist

SUMMARY/ In Lesson 25, you developed arecursive merge sort algorithm using arrays. An
REVIEW: unordered linked list is difficult to sort given its sequentia nature, but a recursive
APCS—Java, Lesson 33 © ICT 2003, www.ict.org, All Rights Reserved 0.A.33.1 (Page5)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



merge sort can be developed for linked lists using the Li nkedLi st class. The
agorithms required (split and merge) will provide excellent practice in working
withthe Li nkedLi st,Iterator,and Li stlterator classes. After applying
arecursive merge sort to alinked list, another function to reverse the list will be

written.

ASSIGNMENT: Lab Exercise L.A.33.1, MergeList

APCS—Java, Lesson 33 © ICT 2003, www.ict.org, All Rights Reserved 0.A.33.1 (Page 6)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



LAB EXERCISE
MergelList

Background:

An unordered linked ligt is difficult to sort given its sequential nature, but a recursive merge sort can be
developed for linked lists. The agorithms required (split and merge) will provide excellent practicein
working with thej ava. uti | . Li nkedLi st and Li st1terator classes.

A linked list can be sorted using a recursive merge sort algorithm. Here are the steps:
1. Split thelist into two smdler lists.
2. Recursively sort these two lists using merge sort.

3. Merge the two sorted lists together.

Suppose we begin with alist of seven nodes, pointed to by A.

A—> 57 » 19 > 82 > 4 > 25 > 12 > 2

We then split thislist into two smaller lists that differ in size by no more than one node. It does not matter
which values end up in either list. In the example to follow, list A will take the first half of the list while list
B will have the second haf of the origind list.

A—>|57 » 19 > 82 > 4

B—>| 25 > 12 > 2

Next, we recursively sort these two lists.

A—> 4 > 19 > 57 > 82

Finaly, we merge these two sorted lists together.

Y
Y
Y

A—»| 2 82

Y
N
Y

12 > 19 25 57

APCS- Java, Lesson 33 © ICT 2003, www.ict.org, All Rights Reserved L.A.33.1(Pagel)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



Y ou are encouraged to look over your code for the mer ge and mer geSor t methods from Lesson 25.
Reviewing these agorithms as applied to arrays will help you to solve the same mergesort concept with
linked ligts.

Assignment:

1. Thelinked list should be of typej ava. uti | . Li nkedLi st .

2. Thedatafileto beusedinthislabis (file20.txt).

3. Building theinitid linked list from (file20.txt) should follow thislogic. Aseach new piece of data
(Id/Inv pair) comes off the datafile, it is placed at the beginning of the list. Therefore, the first values
read from the data file will end up last in the list.

4. The recursive merge sort dgorithm will need the supporting agorithms of splitting and merging lists.
List iterators should be used to implement these methods.

5. Your program should consist of this sequence of scripted events:
Load the data file and build the initid list
Print the linked ligt - it is unordered
Recursively merge sort the list
Print the linked ligt - it is now sorted
Reversethe linked list
Print the linked list - it is now in descending order
6. If your ingtructor chooses, you will be provided with a program shell consisting of aMer geLi st class
containing a main method, and the | t emclass. All of the code devel opment should appear in the
Mer gelLi st class. Here are some of the specifications of the Mer geLi st class.
a. ThereverselLi st method is stubbed out as a print statement.
b. Thesplit method is stubbed out as a print statement.
c. Themer ge method is stubbed out as a print statement.

d. Methodsto read the data file and print the list are provided.

Instructions:

1. Modify and write code as necessary to satisfy the above specifications.

2. Print out the source for the Mer geLi st class.

3. Turninyour source aong with the run outpuit.

APCS- Java, Lesson 33 © ICT 2003, www.ict.org, All Rights Reserved L.A.33.1 (Page?2)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)



