STUDENT OUTLINE

Lesson 36 — Deletion from a Binary Tree

INTRODUCTION: Because anodein abinary tree can have one or two descendants, deleting such a
location can cause alot of problems. After examining the code to delete from a
binary tree, you will then solve a mirror image variation of thisroutinein your lab
exercise. The use of diagramsto follow this agorithm is very important.

The key topic for thislesson is.

A.
B.

DISCUSSION: A.

APCS - Java, Lesson 36

Déeetion from aBinary Tree
del et eTar get Node Method

Ddetion from aBinary Tree

Deleting a node involves two steps:
a. Locating the node to be deleted.
b. Eliminate that node from the data structure.

After locating the node to be deleted, we must determine the nature of that
node.

a. If itisaleaf, make the parent node point to nul | .

b. If it has one child on the right, make the parent node point to the right
child.

c. If it has one child on the Ieft, make the parent node point to the left child.

d. If it hastwo children, the problem becomes much herder to solve.

myRoot

©

-

/\ () (%)
g By

Diagram 36-1

© ICT 2003, www.ict.org, All Rights Reserved 0.A.36.1 (Page 1)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

See Handout H.A.36.1,
Deletion from a Binary
Tree.

APCS - Java, Lesson 36

A leaf node containing the value 43 will be easy to delete. The parent node
of the node containing 43 will changeitsright pointer to nul | .

A node with one child on the right, like the node with vaue 10, will involve
rerouting the node from its parent to its single right child.

But rerouting around the node with value 29, a node with two children,
involves bresking off subtrees and reattaching them at the proper location.

The code to implement deletion from a binary treeis given in Handout,
H.A.36.1, Deletion from a Binary Tree. The recursive del et eHel per
method that locates the node to be deleted is given below:

public void del et e(Conparabl e target)
{

}

nmyRoot = del et eHel per (nyRoot, target);

private TreeNode del et eHel per (TreeNode node, Conparabl e target)
{

if (node == null)

{ t hr ow new NoSuchEl enent Exception();

zel se if (target.equal s(node. getVal ue()))

{ return del et eTar get Node(node) ;

}el se if (target.conpareTo(node. getValue()) < 0)
{

node. set Left (del et eHel per (node. get Left (), target));
return node;

}

el se //target.conpareTo(root.getValue()) >0

{
node. set Ri ght (del et eHel per (node. getRight (), target));
return node;

}
}

After the valueto be deleted isinput in t est Del et e, this method calls the
del et e method of the Bi nar ySear chTr ee object the first time and passes
areference to the | t emobject containing the id value to be deleted from the
tree. Thedel et e method then passes the root of the tree (myRoot) and the
target item to be located to the del et eHel per method. The

del et eHel per method receives aTr eeNode reference alias (node). The
del et eHel per method has 4 scenarios:

a node == nul | , the value does not exist in the tree, throw a
NoSuchEl enent Excepti on.

© ICT 2003, www.ict.org, All Rights Reserved 0.A.36.1 (Page 2)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

b. We found the correct node (t ar get . equal s(node. get Val ue())),
cdl del et eTar get Node and passit node.
c. Did not find the node yet, recursively call del et eHel per and passit the
internal reference to the left child.
d. Recursively cal del et eHel per and passit the internal reference to the
right child.
B. del et eTar get Node Method

1. Thedel et eHel per method finds the node to be deleted and calls
renoveTar get Node, passing areference to the Tr eeNode t ar get as
shown in the following method.

private TreeNode del et eTar get Node(Tr eeNode t ar get)

{
if (target.getRight() == null)
{
return target.getlLeft();

}

else if (target.getlLeft() == null)

{

return target.getRight();

}

else if (target.getLeft().getRight() == null)

{
target.setVal ue(target.getLeft().getValue());
target.setlLeft(target.getlLeft().getlLeft());
return target;

}

else // left child has right child

{
TreeNode marker = target.getlLeft();
while (nmarker.getRight().getRight() !'= null)

mar ker = marker. getRight();

target. set Val ue(nmarker. get R ght().getVal ue());
mar ker. set R ght (narker. getRight (). getLeft());
return target;

}

}

2. Theadgorithm for deletion employed in the del et eTar get Node method is.
a. Nodeto be deleted is aleaf. Make the link from the parent nul | .

b. Node to be deleted has no left (or right) subtree (one child). Make the
link from the parent refer to the left (or right) subtree.

c. Node to be deleted has non-empty left and right subtrees (two children).
Change the node value to the largest value in the left subtree, and then
delete the largest value from the left subtree. (The deletion of the largest
value must be either case aor b above.)

3. Theleaf and one child cases are handled in del et eTar get Node asfollows:

APCS - Java, Lesson 36 © ICT 2003, www.ict.org, All Rights Reserved 0.A.36.1 (Page 3)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS - Java, Lesson 36

if (target.getRight() == null)
{
return target.getlLeft();

}
else if (target.getLeft() == null)

{
return target.getRight();

}

These cases are |eft for you and your instructor to trace.

© ICT 2003, www.ict.org, All Rights Reserved
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

0.A.36.1 (Page)

4. The two-child case is more difficult and involves changing the node vaue to
the largest value in the left subtree, then deleting the largest value from the
left subtree. The rightmost node will be the node with the greatest vaue in the
left subtree.

5. Working with asmaller version of the same binary tree in Diagram 36-1.
Suppose in the following diagram we wish to delete the node with value 75

target target

® » &/ &
@b & @

target.setValue(target.getLeft().getValue()) target.setLeft(target.getLeft().getLeft())

Diagram 36-2

6. Working with asmaller version of the same binary tree in Diagram 36-1.
Here are the steps for deleting a node having two children in which the left
child has no right.

a. Copy the contents of the left child of t ar get and set it as the current
value.

target.setVal ue(target.getLeft().getValue());

As show in the diagram above, the value 75 is replace with 62.

b. Resttach the |eft subtree to maintain an ordered tree. The left subtree of
the node reference by t ar get will now point to the node containing the
vaue 58.

target.setlLeft(target.getlLeft().getlLeft());

As show in the Diagram 36-2 above, since the node that originally
contained the value 62 is no longer referenced, it is removed (garbage
collected).

APCS - Java, Lesson 36 © ICT 2003, www.ict.org, All Rights Reserved 0.A.36.1 (Page 5)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

target target

r.ight subtree
not shown
\marker -—)

& @

Diagram 36-3

7. Working with the right subtree of our origina binary tree (see Diagram 36-1).
Here are the steps for deleting a node containing the value 52. In this case
the node has two children and the left child has aright child.

a. Postion nar ker to access the node with the largest value in the left
subtree. Thisisthe rightmost node in the left subtree.

TreeNode nmarker = target.getLeft();
while (rmarker.getRight().getRight() !'= null)
mar ker = marker.getRight();

As show in the diagram above, mar ker now references the node pointing
to the node with largest value in the left subtree (43).

b. Copy the contents of the right child of mar ker and set it as the current
value.

target. set Val ue(marker. get R ght (). getVal ue());

As show in the diagram above, the value 52 is replaced with 43.

c. Deetethelargest value from the right subtree. Reattach the right subtree
to maintain an ordered tree.

mar ker . set R ght (narker. getRight (). getLeft());

As show in the Diagram 36-3 above, the node containing the value 43 is
no longer referenced.

APCS - Java, Lesson 36 © ICT 2003, www.ict.org, All Rights Reserved 0.A.36.1 (Page 6)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

target

Diagram 36-4

8. Thisentire process for the two-child case could be directed the other way.
Again, suppose the node with value 52 is to be deleted from the original tree.
Referring to Diagram 36-4 above, the steps would be:

a. Access the node with the smallest value in the right subtree. Thisisthe
leftmost node in the right subtree.

b. Copy the contents (58) and set it as the current value.

c. Deete the smallest value from the left subtree. Reattach the left subtree
to maintain an ordered tree.

SUMMARY/ The dternative direction of section B.8. above will be the basis of your lab

REVIEW: exercise. There are other deletion agorithms, but this one is efficient and clear.
Take some time to review the steps for yourself using the diagrams and code
Sde-by-side.

ASSIGNMENT: Lab Exercise L.A.36.1, BSTree (Part 3)

APCS - Java, Lesson 36 © ICT 2003, www.ict.org, All Rights Reserved 0.A.36.1 (Page 7)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

BSTree (Part 3)

Assignment:

1. Copy the methods presented in Handout H.A.36.1, Deletion from a Binary Tree. However, you are
required to solve the two-child case as a mirror image of the solution described in Section B.7. of the
student outline O.A.36.1. Changethedel et eTar get Node method to deal with the two-child case
asfollows.

a

Position mar ker to access the node with the smallest value in the right subtree. Thisisthe
leftmost node in the right subtree.

Copy the contents of the left child of mar ker and set it as the current value.

Delete the smallest value from the left subtree. Reattach the left subtree to maintain an ordered
tree.

2. Test your code and solve the following sequence of run output steps:

a
b.
c
d.

Load thefile from disk (file20.txt).

Print the tree.

Print the number of nodes in the tree.

Search for Id values specified by your ingtructor. Print out the Id and Inv response in column
form.

e. Deetethe Id values specified by your instructor.

f. Print the tree again.

g. Print the number of nodesin the tree.
Instructions:

1. Turninyour source code for the entire program and the run output described above.

APCS - Java, Lesson 36 © ICT 2003, www.ict.org, All Rights Reserved L.A.36.1 (Pagel)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

DELETION FROM A BINARY TREE

public void del et e(Conparabl e target)
/'l post: deletes a node with data equal to target, if present,

/1 preserving binary search tree property
{

myRoot = del et eHel per (nyRoot, target);
}

private TreeNode del et eHel per (TreeNode node, Conparabl e target)
/'l pre : node points to a non-enpty binary search tree
/'l post: deletes a node with data equal to target, if present,
/1 preserving binary search tree property
{
if (node == null)
t hr ow new NoSuchEl ement Excepti on();

else if (target.conpareTo(node. getValue()) == 0)

{
return del et eTar get Node(node) ;

}

else if (target.conpareTo(node. getValue()) < 0)

{
node. set Left (del et eHel per (node. get Left (), target));
return node;

}

el se //target.conpareTo(root.getValue()) > 0

{
node. set Ri ght (del et eHel per (node. getRi ght (), target));
return node;

}

}

private TreeNode del et eTar get Node(Tr eeNode t ar get)
/'l pre : target points to node to be del eted
/'l post: target node is deleted preserving binary search tree property

{
if (target.getRight() == null)

{

}
else if (target.getlLeft() == null)

{

}
else if (target.getlLeft().getRight() == null)

{

return target.getlLeft();

return target.getRight();

target.setValue(target.getlLeft().getValue());
target.setlLeft(target.getlLeft().getlLeft());
return target;

}
else // left child has right child

{
TreeNode marker = target.getlLeft();

APCS - Java, Lesson 36 © ICT 2003, www.ict.org, All Rights Reserved H.A.36.1 (Page 1)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

while (marker.getRight().getRight() !'= null)
mar ker = marker. getRi ght ();

target. setVal ue(marker. getRi ght().getVal ue());
mar ker . set Ri ght (mar ker. getRi ght (). getLeft());
return target;

N testDel ete nmethod — add to BSTree.java

public void testDel ete(Bi narySearchTree tenp)

{
int idToDel et e;

bool ean success;

Systemout.println("Testing delete algorithmn");
Systemout.print("Enter Id value to delete (-1 to quit) -->");
i dToDel ete = console.readlnt();

while (idToDel ete >= 0)

{
Item dNode = new Iten(i dToDel ete, O0);
if (tenmp.find(dNode) == null)
Systemout.printin("Id# " + idToDelete + " No such part in stock");
el se
{
t enp. del et e(dNode) ;
Systemout.println(" Id #' + idToDelete + " was deleted");
}

Systemout.println();
Systemout.print("Enter 1d value to delete (-1 to quit) -->");

i dToDel ete = console.readlnt();

APCS - Java, Lesson 36 © ICT 2003, www.ict.org, All Rights Reserved H.A.36.1 (Page 2)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

