STUDENT OUTLINE

Lesson 35 — Binary Tree Algorithms

INTRODUCTION: Having built abinary tree in the memory of your computer, we need the
algorithms to verify that the tree isindeed ordered. The recursive inorder
agorithm is elegant, clean, but difficut to follow. You must understand this
algorithm, for it provides a template for many binary tree routines. Once
convinced that the tree is correct we will code a recursive search agorithm.

The key topics for thislesson are:

A. Inorder Tree Traversal
B. Preorder and Postorder Tree Traversals
C. Counting the Nodesin aTree
D. Searching aBinary Tree
VOCABULARY: TREE TRAVERSAL VISITING A NODE
INORDER PREORDER
POSTORDER
DISCUSSION: A. Inorder Tree Traversal
See Transparency 1. Printing out the information of a binary tree in ascending order isno smple
giﬁ;ﬁ’r ezr_ Inting A task. Using the example diagram in T.A.35.1, the first node value printed
should be 9, and getting there isfairly smple. The next valueis 14, then 21,
then comes abig problem - how do we get back to the root node whose
vaueis 26? Thisis abacktracking problem that is best solved with
recursion.
2. Asareview, assume the following class definition applies in this student
outline.
public class TreeNode
{
private Object val ue;
private TreeNode |eft;
private TreeNode right;
public TreeNode(Object initValue, TreeNode initLeft,
TreeNode initRight)
{
val ue = initVal ue;
left = initLeft;
right = initRight;
}
APCS - Java, Lesson 35 © ICT 2003, www.ict.org, All Rights Reserved 0.A.351 (Page 1)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

public Object getValue()

{
return val ue;
}
public TreeNode getLeft()
{
return left;
}
public TreeNode getRi ght()
{
return right;
}
public void setVal ue(Object theNewval ue)
{
val ue = t heNewval ue;
}
public void setLeft(TreeNode theNewLeft)
{
left = theNewLeft;
}
public void setRi ght(TreeNode theNewRi ght)
{
right = theNewRi ght;
}

}

3. A treetraversa isan agorithm that visits every nodein thetree. Tovisita
node means to process something regarding the data stored in the node. For
now, visiting the node will involve printing the val ue object field.

4. Aninorder tree traversa visits every nodein acertain order. Each nodeis
processed in the following sequence:

Solve |eft subtree inorder
Visit node
Solve right subtree inorder

Notice that visiting the node is placed between the two recursive calls.

5. Hereisthe code for thei nor der method:

voi d i norder (TreeNode tenp)

{
if (tenp !'= null)
{
i norder (tenp.getlLeft());
Systemout. println(tenp.getValue());
i norder (tenp.getRight());
}
}
APCS - Java, Lesson 35 © ICT 2003, www.ict.org, All Rights Reserved 0.A.35.1 (Page 2)

Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

APCS - Java, Lesson 35

10.

Thefirst call of i nor der isasked to process the root node. The first step of
the method is arecursive call of i nor der to process the left pointer of the
root node. Thisrecursive call to solve the left pointer will take place before
the Syst em out . pri nt | n statement.

Solving for the node with value 14 results in another recursive cal to solve the
left pointer to the node having value 9. Thei nor der call to process the
node with value 9in turn calsi nor der , which hitsanul | . Thisrecursive
cal results in nothing executed.

The recursion backtracks to the inorder processing of the node with value 9.
Our first output occurs and the value 9 is printed. We recursively visit the
node to the right and since nothing is there, we return to the node with value
9.

For the node with value 9, we have now done all three steps. We checked
left, printed the 9, and checked right. This method call is done and we
backtrack to where we left off, which is processing the node with value 14.

From here, the recursion will continue working its way through the tree.
Inorder calls which are postponed are placed on the stack. When acall of
i nor der iscompleted, the program will go to the stack (if necessary) to
backtrack through the tree.

Preorder and Postorder Tree Traversals

A preorder tree traversal processes each node in a different order.

Visit the node
Process the left subtree preorder
Process the right subtree preorder

The only difference is that we will vigt first, then go left, thenright. The
preorder output of the same binary tree will be:

26 14 9 21 79 53 35 99 87
A postorder tree traversal has this order:

Process |eft subtree postorder
Process right subtree postorder
Vidgt the node

The prefix “post” refers to after, hence the location of visiting the node after
the recursive calls. The printout of the same tree will be as follows:

9 21 14 35 53 87 99 79 26

© ICT 2003, www.ict.org, All Rights Reserved 0.A.35.1 (Page 3)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

C. Counting the Nodesin a Tree

1. A gtandard binary tree algorithm is to count the number of nodes in the tree.
Here is a pseudocode version.

Count left subtree recursively
Count the current node as one
Count right subtree recursively

2. Asyou develop the code, consider what base case will terminate the
recursion.

D. Searching aBinary Tree

1. Searching an ordered binary tree can be solved iteratively or recursively.
Here isthe iterative version.

TreeNode find(TreeNode root, Conparabl e val ueToFi nd)

{
Tr eeNode node = root;
while (node !'= null)
{
int result = val ueToFi nd. conpar eTo(node. get Val ue());
if (result == 0)
return node;
else if (result < 0)
node = node. getLeft();
else // if (result > 0)
node = node. getRight();
}
return null;
}

2. If thevaueisnot in the tree, the node pointer will eventualy hitanul | .

3. Notice the type of the argument, val ueToFi nd, inthef i nd method is
designated as Conpar abl e. Thismeansthat val ueToFi nd belongsto a
class that implements the library interface Conpar abl e. f i nd’s code calls
the conpar eTo method of the val ueToFi nd object to determine the
ordering relationship — that’swhy val ueToFi nd must be a Conpar abl e,
not just an bj ect .

4. A recursive version isleft for you to solve as part of the lab exercise.

5. The order of searching an ordered binary tree is O(logoN) for the best case
situation. For a perfectly balanced tree, the capacity of each level is 2&vel #,

Level # Capacity of Level Capacity of Tree

APCS- Java, Lesson 35 © ICT 2003, www.ict.org, All Rights Reserved 0.A.35.1 (Page 4)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

0 1 1
1 2 3
2 4 7
3 8 15
4 16 31
5 32 63
etc.

6. So tarting at the root node, a tree of 63 nodes would require a maximum of 5
left or right movesto find avaue. The number of stepsin searching an
ordered binary tree is approximately O(logoN).

SUMMARY/ The most important topic of thislesson is recursive agorithms required to process
REVIEW: binary trees. Study the examples, draw pictures, do whatever it takesto

understand recursive tree traversals. Many of the algorithms in future lessons
will require recursion.

ASSIGNMENT: Lab Exercise L.A.37.1, BSTree (Part 2)

APCS - Java, Lesson 35 © ICT 2003, www.ict.org, All Rights Reserved 0.A.35.1 (Page 5)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

BSTree (Part 2)

Assignment:

1. Continuing the lab exercise L.A.34.1, BSTree, from the previous lesson, add an i nor der method to
print out the binary tree. Format the output into two columns, | d and | nv amounts.

2. Completethefi nd and count Node agorithms.

Instructions:
1. Complete and test each section.

2. Do not turn in your source code or run output yet. The next lesson will cover the deletion algorithms.

APCS - Java, Lesson 35 © ICT 2003, www.ict.org, All Rights Reserved L.A.35.1 (Pagel)
Use permitted only by licensees in accordance
with license terms (http://www.ict.org/javalicense.pdf)

