
APCS – Java, Lesson 40 © ICT 2003, www.ict.org, All Rights Reserved O.A.40.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 40 – Hash-Coded Data Storage

INTRODUCTION: In the labs in previous lessons you have searched a data file containing ID and

inventory information in a variety of ways. Of the search algorithms studied, the
fastest search algorithm was O(log2N) for a binary tree or binary search of an
ordered array. It is possible to improve on these algorithms, reducing the order of
searching to O(1), or linear function of file size. The data structure used to
accomplish this is called a hash table, and the O(1) search is referred to as
hashing.

 An example of hashing could occur on the first day of school. When distributing

student schedules, one long line is usually broken up into smaller lines, often by
grade level. This concept could be extended to 26 lines. Students line up
according to the first letter of their last name. This is what hash-coded data
storage is about - breaking up and reorganizing one big list into many little lists.

The key topics for this lesson are:

A. Hashing Schemes
B. Dealing with Collisions
C. Order of a Hash-Coded Data Search
D. HashSet and HashMap

VOCABULARY: HASHING HASH KEY
 HASH TABLE COLLISIONS

DISCUSSION: A. Hashing Schemes

1. The example of distributing student schedules illustrates a natural means of
hashing. The process can be simplified by organizing the schedules into piles
by the first letter of the last name.

2. A hashing scheme involves converting a key piece of information into a

specific location, thus reducing the amount of searching in the data structure.
Instead of working with the entire list or tree of data, the hashing scheme tells
you exactly where to store that data or search for it.

APCS – Java, Lesson 40 © ICT 2003, www.ict.org, All Rights Reserved O.A.40.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

3. One important bar code system used by retail stores is the UPC A code*,
which involves a sequence of 10 digits. This system provides for 10 billion
different possible products, 0-9,999,999,999 (which equals 1010 – 1). For
quick access, an array of 10 billion locations would be nice, but wasteful in
terms of computer memory. Since it is unlikely that a store would carry
such a huge number of items, we need a system to store a list of products in
a reasonably sized array.

*Bar code graphic and explanation of how to read bar codes at:

http://www.adams1.com/pub/russadam/upccode.html,

4. A cash register using a bar code scanner needs a very quick response time

when an item is scanned. The 10-digit bar code is read, the item is searched
for in the store's database, and the price is returned to that register. While
searching algorithms of the order (log2N) are relatively fast, we seek an even
faster algorithm.

5. Suppose a store maintains a database of 10,000 bar codes out of the possible

10 billion different values. The values will be stored in an array called a hash
table. Because an array has direct random access to every cell, using a
hashing scheme will give very fast access to the desired item. The hash table
is usually sized about 1.5 to 2.0 times as big as the maximum number of
values stored. (The reason for this sizing will be apparent in a few sections.)
Therefore we will create an array with 15,000 locations.

6. The hashing scheme will tell us where item XXXXX XXXXX is stored out of

the 15,000 locations. A hashing algorithm is a sequence of steps, usually
mathematical in nature, which converts a key field of information into a
location in the hash table.

Bar Code Hashing
Scheme

Hash Table

APCS – Java, Lesson 40 © ICT 2003, www.ict.org, All Rights Reserved O.A.40.1 (Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

7. These “key-to-address transformations” are called hashing functions or
hashing algorithms. When the key is composed of character data, a
numerical equivalent such as the ASCII code is used so that mathematical
processing can take place. Bar codes are numbers, so conversion is not
necessary. Some common hash functions are:

a. Division. The key is subject to modulo division by an integer (often a

prime) equal to or slightly smaller than the desired size of the array. The
result of the division determines which short list to work with in the hash
table.

b. Midsquare. The key is squared and the digits in the middle are retained

for the address. This probably would not work well with bar codes
because they are such large numbers.

c. Folding. The key is divided into several parts, each of which are

combined and processed to give an address. For example:

If the bar code = 70662 11001

1) group into pairs: 70 66 21 10 01

2) multiply the first three numbers together:

 70 x 66 x 21 = 97020

3) add this number to the last two numbers:

 97020 + 10 + 01 = 97031

4) find the remainder of modulo division by 14983 (the largest prime less

than 15000):

 97031 % 14983 = 7133

5) address 7133 is the location to store bar code 70662 11001

8. In the address 7133 will be stored all the fields related to this item, such as
price and name of the item.

9. It is important to develop a good hashing function that avoids collisions in the

hash table. Even using a prime number for the divisor, it is possible for two
bar codes to result in the same address - 7133. To reduce the chances of
such a “collision”, the hash table is sized about 1.5-2.0 times the number of
expected data. If the hash table in our example were sized at 10,000, the
number of items in the database, the likelihood of collisions is increased. We
are trying to balance the need for decreasing the number of collisions against
memory limitations, hence the recommended sizing.

APCS – Java, Lesson 40 © ICT 2003, www.ict.org, All Rights Reserved O.A.40.1 (Page 4)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

10. This advance sizing of the hash table affects the mathematics of the hashing

algorithm; therefore the programmer must have a very clear idea of the
number of data to be stored. The number of items must be known in advance
and this number must be fairly constant during the life of the program. This
limits the use of hashing to certain situations. If the number of data is
unknown or varies greatly, hashing is inappropriate.

B. Dealing with Collisions

1. There are two methods of creating multiple storage locations for the same

address in the hash table. One solution involves a matrix, while the other uses
dynamic linked lists.

2. To implement the hash table as a matrix, an estimate of the maximum number

of collisions at any one address must be made. The second dimension is sized
accordingly. Suppose that number is estimated as 5:

Item[][] table = new Item[15000][5];

3. This method has some major drawbacks. The size of this data structure has

suddenly increased by a factor of five. The above table will have 75,000
cells, many of which will be empty. Also, what happens if a location must
deal with more than 5 collisions?

4. A dynamic solution, referred to as chaining, is much better. The linked lists

will only increase as values are stored in that location in the hash table. In
this version, the hash table will be an array of object references.

ListNode[] hashTable = new ListNode[MAX];

5. The order of the values in the linked lists in unimportant. If the hashing
scheme is a good one, the number of collisions will be minimal.

APCS – Java, Lesson 40 © ICT 2003, www.ict.org, All Rights Reserved O.A.40.1 (Page 5)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

C. Order of a Hash-Coded Data Search

1. After scanning an item at a cash register, the number of steps required to find

the price is constant:

a. Hash the bar code value and get the hash table location.

b. Go to that location in the hash table, traverse the linked list until you find

the item.

c. Return the price.

2. The number of steps in this algorithm is constant. The hashing scheme tells

the program exactly where to look in the hash table; therefore this type of
search is independent of the amount of data stored. We categorize this type
of algorithm as constant time, or O(1).

3. If the linked lists get lengthy, this could add a few undesirable extra steps to

the process. A good hashing scheme will minimize the length of the longest
list.

4. An interesting alternative to linked lists is the use of ordered binary trees to

deal with collisions. For example, the hash table could consist of 10,000
potential binary trees, each ordered by a key field.

5. Remember that determining the order of an algorithm is only a categorization,

not an exact calculation of the number of steps. A hashing scheme will
always take more than one step, but the number of steps is independent of the
size of the data set, hence we call it O(1).

D. HashSet and HashMap

1. The HashSet and HashMap classes are implementations of the Set and

Map interfaces from the Java standard class Library. A hash table is used to
store their elements.

APCS – Java, Lesson 40 © ICT 2003, www.ict.org, All Rights Reserved O.A.40.1 (Page 6)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

2. The methods from the HashSet and HashMap that are included in the AP
Subset are shown below.

Methods of the HashSet Class included in the AP Subset∗

// Adds the specified element to this set if it is not
// already present. Returns true if the set did not already
// contain the specified element.
boolean add(Object obj);

// Returns true if this set contains the specified element.
boolean contains(Object obj);

// Returns an iterator over the elements in this set.
// The elements are returned in no particular order.
Iterator iterator()

// Removes the specified element from this set if it is
// present. Returns true if the set contained the specified
// element.
boolean remove(Object obj);

// Returns the number of elements in this set.
int size();

Methods of the HashMap Class included in the AP Subset*

// Returns true if this map contains a mapping for the
// specified key.
boolean containsKey(Object key);

// Returns the value to which the specified key is mapped,
// or null if the map contains no mapping for this key.
boolean get(Object key);

// Returns a set containing the keys in this map.
Set keySet()

// Adds the key-value pair to this map. Returns the previous
// value associated with specified key, or null if there was
// no mapping for key.
boolean put(Object key, Object value);

// Returns the number of key-value pairs in this map.
int size();

3. In the HashSet class, a hash of the element is used to find its location in the
hashtable. In the HashMap class, a hash of the key is used. The hashCode
method, which exists on all objects, calculates the hash code.

∗ Adapted from the College Board’s AP Computer Science AB: Implementation Classes and Interfaces.

APCS – Java, Lesson 40 © ICT 2003, www.ict.org, All Rights Reserved O.A.40.1 (Page 7)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

4. The basic operations on HashSet and HashMap objects run in constant,
O(1), time due to the hash table implementation employed by the class.

5. The iterator that is returned by the iterator method of HashSet does not

order the objects returned.

SUMMARY/
REVIEW:

Hashing is a great strategy for storing and searching information, especially
where speed is a priority. In the hashing approach, the key is converted by some
hashing function into an integer that is used as an index into a hash table.
Different keys may be hashed into the same index, causing collisions. The
performance and space requirements for hash table vary depending on the
implementation and collision resolution method. In the best case a hash table
provides O(1) access to data, but the performance deteriorates with a lot of
collisions. In the lab exercise, you will implement a hash coded data storage
scheme and determine its efficiency.

ASSIGNMENT: Lab Exercise L.A.40.1, Hashing

APCS - Java, Lesson 40 © ICT 2003, www.ict.org, All Rights Reserved L.A.40.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

Hashing

Background:

A larger version of the store inventory data file (file400.txt) will be used in this lab exercise. As you may
recall, the text file consisted of two fields, id and inv. The id values on disk will range from 1-20000 and
the inv fields from 1-100. There are no duplicate id values in the data file. Every id value is unique in
the file and the number of store items in this problem is 400. Use this value to size your hash table.

Assignment:

1. Write a program that uses a hash-coded data storage method to store the 400 items in (file400.txt).

You can start with an earlier program such as the binary search lab to speed up your work.

2. The method of dealing with collisions should be the dynamic linked list version.

3. You should develop your own hashing scheme to take the key field (id) and determine the correct

address.

4. Test your new data structure and algorithm with some sample searches. The program should prompt

you for an id value and return the inv amount or a message that the id does not exist. Your
instructor will specify some sample id values to test out.

5. Your program must analyze the efficiency of your hashing scheme by determining the following

statistics about your hash table:

a. The % of null pointers in the hash table.
b. The average length of linked lists.
c. The longest linked list in the hash table.

After seeing these results, you might want to try to improve upon your hashing scheme if the number of
collisions is excessive.

Instructions:

1. Turn in your source code and a run output of the following results:

a. The searches

b. The statistical analysis of the hash table.

