
APCS - Java, Lesson 35 © ICT 2003, www.ict.org, All Rights Reserved O.A.35.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 35 – Binary Tree Algorithms

INTRODUCTION: Having built a binary tree in the memory of your computer, we need the

algorithms to verify that the tree is indeed ordered. The recursive inorder
algorithm is elegant, clean, but difficult to follow. You must understand this
algorithm, for it provides a template for many binary tree routines. Once
convinced that the tree is correct we will code a recursive search algorithm.

The key topics for this lesson are:

A. Inorder Tree Traversal
B. Preorder and Postorder Tree Traversals
C. Counting the Nodes in a Tree
D. Searching a Binary Tree

VOCABULARY: TREE TRAVERSAL VISITING A NODE
 INORDER PREORDER
 POSTORDER

DISCUSSION: A. Inorder Tree Traversal

See Transparency
T.A.35.1, Printing A
Binary Tree.

1. Printing out the information of a binary tree in ascending order is no simple
task. Using the example diagram in T.A.35.1, the first node value printed
should be 9, and getting there is fairly simple. The next value is 14, then 21,
then comes a big problem - how do we get back to the root node whose
value is 26? This is a backtracking problem that is best solved with
recursion.

2. As a review, assume the following class definition applies in this student

outline.

public class TreeNode
{
 private Object value;
 private TreeNode left;
 private TreeNode right;

 public TreeNode(Object initValue, TreeNode initLeft,
 TreeNode initRight)
 {
 value = initValue;
 left = initLeft;
 right = initRight;
 }

APCS - Java, Lesson 35 © ICT 2003, www.ict.org, All Rights Reserved O.A.35.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

 public Object getValue()
 {
 return value;
 }

 public TreeNode getLeft()
 {
 return left;
 }

 public TreeNode getRight()
 {
 return right;
 }

 public void setValue(Object theNewValue)
 {
 value = theNewValue;
 }

 public void setLeft(TreeNode theNewLeft)
 {
 left = theNewLeft;
 }

 public void setRight(TreeNode theNewRight)
 {
 right = theNewRight;
 }
}

3. A tree traversal is an algorithm that visits every node in the tree. To visit a

node means to process something regarding the data stored in the node. For
now, visiting the node will involve printing the value object field.

4. An inorder tree traversal visits every node in a certain order. Each node is

processed in the following sequence:

Solve left subtree inorder
Visit node
Solve right subtree inorder

Notice that visiting the node is placed between the two recursive calls.

5. Here is the code for the inorder method:

void inorder (TreeNode temp)
{
 if (temp != null)
 {
 inorder (temp.getLeft());
 System.out.println(temp.getValue());
 inorder (temp.getRight());
 }
}

APCS - Java, Lesson 35 © ICT 2003, www.ict.org, All Rights Reserved O.A.35.1 (Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

6. The first call of inorder is asked to process the root node. The first step of
the method is a recursive call of inorder to process the left pointer of the
root node. This recursive call to solve the left pointer will take place before
the System.out.println statement.

7. Solving for the node with value 14 results in another recursive call to solve the

left pointer to the node having value 9. The inorder call to process the
node with value 9 in turn calls inorder, which hits a null. This recursive
call results in nothing executed.

8. The recursion backtracks to the inorder processing of the node with value 9.
Our first output occurs and the value 9 is printed. We recursively visit the
node to the right and since nothing is there, we return to the node with value
9.

9. For the node with value 9, we have now done all three steps. We checked

left, printed the 9, and checked right. This method call is done and we
backtrack to where we left off, which is processing the node with value 14.

10. From here, the recursion will continue working its way through the tree.

Inorder calls which are postponed are placed on the stack. When a call of
inorder is completed, the program will go to the stack (if necessary) to
backtrack through the tree.

B. Preorder and Postorder Tree Traversals

1. A preorder tree traversal processes each node in a different order.

Visit the node
Process the left subtree preorder
Process the right subtree preorder

The only difference is that we will visit first, then go left, then right. The
preorder output of the same binary tree will be:

26 14 9 21 79 53 35 99 87

2. A postorder tree traversal has this order:

Process left subtree postorder
Process right subtree postorder
Visit the node

The prefix “post” refers to after, hence the location of visiting the node after
the recursive calls. The printout of the same tree will be as follows:

9 21 14 35 53 87 99 79 26

APCS - Java, Lesson 35 © ICT 2003, www.ict.org, All Rights Reserved O.A.35.1 (Page 4)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

C. Counting the Nodes in a Tree

1. A standard binary tree algorithm is to count the number of nodes in the tree.

Here is a pseudocode version.

Count left subtree recursively
Count the current node as one
Count right subtree recursively

2. As you develop the code, consider what base case will terminate the

recursion.

D. Searching a Binary Tree

1. Searching an ordered binary tree can be solved iteratively or recursively.

Here is the iterative version.

TreeNode find(TreeNode root, Comparable valueToFind)
{
 TreeNode node = root;

 while (node != null)
 {
 int result = valueToFind.compareTo(node.getValue());
 if (result == 0)
 return node;
 else if (result < 0)
 node = node.getLeft();
 else // if (result > 0)
 node = node.getRight();
 }
 return null;
}

2. If the value is not in the tree, the node pointer will eventually hit a null.

3. Notice the type of the argument, valueToFind, in the find method is

designated as Comparable. This means that valueToFind belongs to a
class that implements the library interface Comparable. find’s code calls
the compareTo method of the valueToFind object to determine the
ordering relationship – that’s why valueToFind must be a Comparable,
not just an Object.

4. A recursive version is left for you to solve as part of the lab exercise.

5. The order of searching an ordered binary tree is O(log2N) for the best case

situation. For a perfectly balanced tree, the capacity of each level is 2level #.

 Level # Capacity of Level Capacity of Tree

APCS - Java, Lesson 35 © ICT 2003, www.ict.org, All Rights Reserved O.A.35.1 (Page 5)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

 0 1 1
 1 2 3
 2 4 7
 3 8 15
 4 16 31
 5 32 63
 etc.

6. So starting at the root node, a tree of 63 nodes would require a maximum of 5
left or right moves to find a value. The number of steps in searching an
ordered binary tree is approximately O(log2N).

SUMMARY/
REVIEW:

The most important topic of this lesson is recursive algorithms required to process
binary trees. Study the examples, draw pictures, do whatever it takes to
understand recursive tree traversals. Many of the algorithms in future lessons
will require recursion.

ASSIGNMENT: Lab Exercise L.A.37.1, BSTree (Part 2)

APCS - Java, Lesson 35 © ICT 2003, www.ict.org, All Rights Reserved L.A.35.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

BSTree (Part 2)

Assignment:

1. Continuing the lab exercise L.A.34.1, BSTree, from the previous lesson, add an inorder method to

print out the binary tree. Format the output into two columns, Id and Inv amounts.

2. Complete the find and countNode algorithms.

Instructions:

1. Complete and test each section.

2. Do not turn in your source code or run output yet. The next lesson will cover the deletion algorithms.

