
APCS - Java, Lesson 38 © ICT 2003, www.ict.org, All Rights Reserved O.A.38.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

STUDENT OUTLINE

Lesson 38 – Stacks

INTRODUCTION: When studying recursion you were introduced to the concept of a stack. A stack

is a linear data structure with well-defined insertion and deletion routines. The
stack abstraction has been implemented for you in the ArrayStack class. After
covering the member methods available in implementing a stack interface, the lab
exercise will use stacks to solve a non-recursive inorder tree traversal problem.

The key topics for this lesson are:

A. The Stack Abstract Data Type
B. Implementation Strategies for a Stack Type

VOCABULARY: STACK POP

PUSH TOP

DISCUSSION: A. The Stack Abstract Data Type

1. A stack is a linear data structure, with each node or cell holding the same

data type.

2. All additions to and deletions from a stack occur at the top of the stack. The

last item pushed onto the stack will be the first item removed. A stack is
sometimes referred to as a LIFO structure, which stands for Last-In, First-
Out.

3. Two of the more important stack operations involve pushing data onto a

stack and popping data off the stack.

4. The push operation will look like this:

73

19

55

42

28

73

19

55

42

28

New value

Stack Before Push Stack After Push

Top Before

Top After

Push Operation

APCS - Java, Lesson 38 © ICT 2003, www.ict.org, All Rights Reserved O.A.38.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

5. The pop operation will look like this:

43

89

16

42

89

16

42

Stack Before Pop Stack After Pop

Top Before

Top After

43 Value
extracted

Pop Operation

B. Implementation Strategies for a Stack Type

See Handout
H.A.38.1, Stack
Interface.

1. A Stack interface is defined to formalize the stack methods. See Handout
H.A.38.1, Stack Interface* for the details.

public interface Stack
{
 boolean isEmpty();
 void push(Object x);
 Object pop();
 Object peekTop();
}

2. The Stack interface above specifies the push and pop methods, the
boolean method isEmpty, and an additional method peekTop that returns
the value of the top element without removing it from the stack.

3. The following listing shows the Stack interface implemented in the

ArrayStack class:

public class ArrayStack implements Stack
{
 private java.util.ArrayList array;

 public ArrayStack()
 { array = new java.util.ArrayList(); }
 public boolean isEmpty() { return array.size() == 0; }
 public void push(Object obj) { array.add(obj); }
 public Object pop() { return array.remove(array.size() - 1); }
 public Object peekTop() { return array.get(array.size() - 1); }
}

* Adapted from the College Board’s AP Computer Science AB: Implementation Classes and Interfaces.

APCS - Java, Lesson 38 © ICT 2003, www.ict.org, All Rights Reserved O.A.38.1 (Page 3)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

4. The data structure used in the ArrayStack class is an ArrayList. This
allows for resizing of the stack as needed to make it larger.

APCS - Java, Lesson 38 © ICT 2003, www.ict.org, All Rights Reserved O.A.38.1 (Page 4)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

5. Here is a short program illustrating usage of the ArrayStack class.

// Example program using the ArrayStack class

public static void main(String[] args)
{
 ArrayStack stack = new ArrayStack();

 for (int k = 1; k <= 5; k++)
 stack.push(new Integer(k));

 while (!(stack.isEmpty()))
 {
 System.out.print(stack.pop() + " ");
 }
}

6. Another approach would be to use a linked list that would support true
dynamic resizing. As you push data onto the stack another node is added to
the appropriate end of the linked list. When data is popped from the stack,
the linked list would be reduced in size. The following listing shows the Stack
interface implemented in the ListStack class as a
java.util.LinkedList:

public class ListStack implements Stack
{
 private java.util.LinkedList list;

 public ListStack() { list = new java.util.LinkedList(); }
 public boolean isEmpty() { return list.isEmpty(); }
 public void push(Object obj) { list.addFirst(obj); }
 public Object pop() { return list.removeFirst(); }
 public Object peekTop() { return list.getFirst(); }
}

SUMMARY/
REVIEW:

The stack ADT (Abstract Data Type – see Lesson 20) is what makes recursive
algorithms possible. In the lab exercise you will gain a better understanding of the
recursive inorder function used to traverse a binary tree.

ASSIGNMENT: Lab Exercise L.A.38.1, Inorder

APCS - Java, Lesson 38 © ICT 2003, www.ict.org, All Rights Reserved L.A.38.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

LAB EXERCISE

Inorder

Background:

Any recursive algorithm can be reduced to a linear sequence of events. It will be longer and more difficult
to follow, but recursive solutions can be rewritten as iterative solutions if a stack is available for use. In
this lab exercise, you will implement a non-recursive inorder method now that we have a stack class to
support stack operations. After completing the lab, you should have a greater appreciation for recursion
and what it will accomplish for you.

You will work with the same binary tree code as implemented in Lessons 34-36. A non-recursive
inorder method is summarized in pseudocode form below.

void inorder (TreeNode root)
{
 declare a stack of TreeNode, initialized as empty
 declare temp as a TreeNode

 start temp = root

 do
 {
 while moving temp as far left as possible,
 push tree references onto the stack

 if the stack is not empty
 reposition temp by popping the stack

 print the contents of tempgetValue()
 move temp one node to the right
 }
 while (the stack is not empty) or (temp != null)
}

Assignment:

1. Starting with an old binary tree lab, keep the code needed to read a data file (file20.txt) and build the

binary tree.

2. Implement the Stack interface using either the ArrayStack class or the ListStack class

described in the notes.

3. Solve the code for the non-recursive inorder method. Use (file20.txt) to test your program.

Instructions:

APCS - Java, Lesson 38 © ICT 2003, www.ict.org, All Rights Reserved L.A.38.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

1. Turn in your source code and a run output. The run output should consist of the inorder output of
the binary tree.

APCS - Java, Lesson 38 © ICT 2003, www.ict.org, All Rights Reserved H.A.38.1 (Page 1)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

Stack Interface* and Implementation

public interface Stack
{
 // postcondition: returns true if stack is empty, false otherwise
 boolean isEmpty();

 // precondition: stack is [e1, e2, ..., en] with n >= 0
 // postcondition: stack is [e1, e2, ..., en, x]
 void push(Object x);

 // precondition: stack is [e1, e2, ..., en] with n >= 1
 // postcondition: stack is [e1, e2, ..., e(n-1)]; returns en
 // throws an unchecked exception if the stack is empty
 Object pop();

 // precondition: stack is [e1, e2, ..., en] with n >= 1
 // postcondition: returns en
 // throws an unchecked exception if the stack is empty
 Object peekTop();
}

public class ArrayStack implements Stack
{
 private java.util.ArrayList array;

 public ArrayStack()
 {
 array = new java.util.ArrayList();
 }

 public void push(Object obj)
 {
 array.add(obj);
 }

 public Object pop()
 {
 return array.remove(array.size() - 1);
 }

 public Object peekTop()
 {
 return array.get(array.size() - 1);
 }

 public boolean isEmpty()
 {
 return array.size() == 0;

* Adapted from the College Board’s AP Computer Science AB: Implementation Classes and Interfaces.

APCS - Java, Lesson 38 © ICT 2003, www.ict.org, All Rights Reserved H.A.38.1 (Page 2)
 Use permitted only by licensees in accordance
 with license terms (http://www.ict.org/javalicense.pdf)

 }
}

public class ListStack implements Stack
{
 private java.util.LinkedList list;

 public ListStack()
 {
 list = new java.util.LinkedList();
 }

 public boolean isEmpty()
 {
 return list.isEmpty();
 }

 public void push(Object obj)
 {
 list.addFirst(obj);
 }

 public Object pop()
 {
 return list.removeFirst();
 }

 public Object peekTop()
 {
 return list.getFirst();
 }
}

